US009372722B2

a2 United States Patent 10) Patent No.: US 9,372,722 B2
Factor et al. (45) Date of Patent: Jun. 21, 2016
(54) RELIABLE ASYNCHRONOUS PROCESSING (56) References Cited

OF A SYNCHRONOUS REQUEST
U.S. PATENT DOCUMENTS

(71) Applicant: International Business Machines

. 6,026,424 A *  2/2000 Circenis .......ccoceeeruennee. 718/104
Corporation, Armonk, NY (US) 6,687,729 Bl 2/2004 Sievert et al.
. 6,832,310 B1  12/2004 Bailey et al.
(72) Inventors: Michel E Factor, Haifa (IL); David 7,260,698 B2 8/2007 Hepkin
Hadas, Zichron Yaakov (IL); Elliot K 2004/0250000 Al 12/2004 Jay et al.
Kolodner, Haifa (IL) 2006/0136930 Al 6/2006 Kaler et al.
’ 2010/0037222 Al 2/2010 Tats_ubori et al.
(73) Assignee: Internati({nal Business Machines %8}?;8}2%5241‘ ﬁ} ggg}? glslal etal.
Corporation, Armonk, NY (US) 2012/0180030 Al 7/2012 Crutchfield et al.
(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
patent is extended or adjusted under 35 )
U.S.C. 154(b) by 332 days. Primary Examiner — Yicun Wu

(74) Attorney, Agent, or Firm — Alexa L. Ashworth
(21) Appl. No.: 13/932,008

(57) ABSTRACT
(22) Filed: Jul. 1, 2013 Machines, systems and methods for processing a request in a
(65) Prior Publication Data client-s.erver computing enViropment are .provided. 11.1 one
embodiment, the method comprises receiving from a client a
US 2015/0006481 Al Jan. 1, 2015 request submitted to a server for purpose of synchronous
processing by the server; assigning the request to a first thread
(51) Int.CL for processing; registering the request with a request registra-
GO6F 17/30 (2006.01) tion system, wherein the request is assigned to the first thread
GO6F 17/00 (2006.01) for processing, in response to determining that the request is
GOGF 9/48 (2006.01) acceptable and may be processed synchronously, wherein the
(52) US.CL request is unregistered from the request registration system,
CPC e GO6F 9/4843 (201301) in response to detennining that the first thread Completed
(58) Field of Classification Search processing of the request within a first timeline, and wherein
CPC ..o GOG6F 17/30386; GOGF 17/30595; an alternative thread is assigned for processing the request

GOG6F 17/30424; GO6F 3/061; GO6F 17/30171; asynchronously, in response to determining that the first
GO6F 3/0689; GOGF 9/3851; GOO6F 9/542; thread did not complete processing of the request within the
GO6F 11/3664; GOO6F 11/3672; GOGF 11/3684; first timeline.
GO6F 11/3688; GOOF 12/0246
See application file for complete search history. 23 Claims, 6 Drawing Sheets

Submit request
21

for synchronous A §210

processing to server

}

Server assigns f 8220
request to a first

5226 thread
S225
No Request acceptable?
Yes
$230
Request may be processed
No synchronously?
Yes
$260 s
Register request in
Request Registration I 5240
System for first thread




U.S. Patent Jun. 21,2016 Sheet 1 of 6 US 9,372,722 B2

Operating Environment 100 N

Request Processor 124

Request Registration
System 150

Guest Software 114

Operating System 112

Network
130

v

Client Machine 110 Server System 120

Storage Device 140

FIG. 1



U.S. Patent Jun. 21,2016 Sheet 2 of 6 US 9,372,722 B2

Submit request
S210

for synchronous v
processing to server

:

Server assigns Is 5220
request to a first
thread

S226

No

S225
Request acceptable?

Yes

S230

equest may be processed

No synchronously?

Yes
\ 4

Register request in

Request Registration
System for first thread

s S240

FIG. 2



U.S. Patent Jun. 21,2016 Sheet 3 of 6 US 9,372,722 B2

Register the request %3 10
with request
registration system
for processing

A 4
Notify that
processing of the s S315
request is deferred
to a later time

A 4

Terminate first B S320
thread

D

FIG. 34



U.S. Patent Jun. 21,2016 Sheet 4 of 6 US 9,372,722 B2

o e

Request registration
system registers the S340
request and assigns a
thread to process the
request
asynchronously

Attempt to service

the request by the |/ 8350
thread

Yes

$380 Thread is Report results and
| disassociated with unregister request \/8370
from request
the request . .
registration system
S385 S375
Terminate thread Terminate thread |/

End

FIG. 3B



U.S. Patent

Jun. 21, 2016

Hardware Environment 1110 ~N

101

Processor §

102
\

Sheet 5 of 6

1103
A

Local |
Memory |

o |
Controller

US 9,372,722 B2

1104

Cache
Memory

User

Devices

Interface

Storage
Media

Bus 1100

Display
Screen

Communication §
Interface |




U.S. Patent

Jun. 21, 2016 Sheet 6 of 6

Software Environment 1120 —-\‘

US 9,372,722 B2

Application
Software
1122

User
Interface
1124

Browser
1126

System Software 1121

Hardware Environment 1110

FIG. 4B



US 9,372,722 B2

1
RELIABLE ASYNCHRONOUS PROCESSING
OF A SYNCHRONOUS REQUEST

COPYRIGHT & TRADEMARK NOTICES

A portion of the disclosure of this patent document may
contain material, which is subject to copyright protection.
The owner has no objection to the facsimile reproduction by
any one of the patent document or the patent disclosure, as it
appears in the Patent and Trademark Office patent file or
records, but otherwise reserves all copyrights whatsoever.

Certain marks referenced herein may be common law or
registered trademarks of the applicant, the assignee or third
parties affiliated or unaffiliated with the applicant or the
assignee. Use of these marks is for providing an enabling
disclosure by way of example and shall not be construed to
exclusively limit the scope of the disclosed subject matter to
material associated with such marks.

TECHNICAL FIELD

The disclosed subject matter relates generally to the reli-
able asynchronous processing of a synchronous request sub-
mitted from a client machine to a server system in a comput-
ing environment.

BACKGROUND

In a client-server model, the client machine submits a
request for processing to a server system. The server system
services the request and returns the results to the client
machine. Depending on implementation, a server may ser-
vice a request either synchronously or asynchronously.

In a synchronous model, the client typically establishes a
communication session with the server when a request is
submitted to the server. If the request cannot be completed
within a predetermined time, the session is terminated and the
client will have to submit the request again.

In an asynchronous model, the submitted request by the
client is added to a queue. Typically, no session needs to be
established between the server and the client. The request is
processed asynchronously by the server from the queue when
possible.

SUMMARY

For purposes of summarizing, certain aspects, advantages,
and novel features have been described herein. It is to be
understood that not all such advantages may be achieved in
accordance with any one particular embodiment. Thus, the
disclosed subject matter may be embodied or carried outin a
manner that achieves or optimizes one advantage or group of
advantages without achieving all advantages as may be taught
or suggested herein.

Machines, systems and methods for processing a request in
a client-server computing environment are provided. In
accordance with one embodiment, the method comprises
receiving from a client a request submitted to a server for
purpose of synchronous processing by the server; assigning
the request to a first thread for processing; registering the
request with a request registration system, wherein the
request is assigned to the first thread for processing, in
response to determining that the request is acceptable and
may be processed synchronously, wherein the request is
unregistered from the request registration system, in response
to determining that the first thread completed processing of
the request within a first timeline, and wherein an alternative

20

25

30

35

40

45

2

thread is assigned for processing the request asynchronously,
in response to determining that the first thread did not com-
plete processing of the request within the first timeline.

In accordance with one or more embodiments, a system
comprising one or more logic units is provided. The one or
more logic units are configured to perform the functions and
operations associated with the above-disclosed methods. In
yet another embodiment, a computer program product com-
prising a computer readable storage medium having a com-
puter readable program is provided. The computer readable
program when executed on a computer causes the computer
to perform the functions and operations associated with the
above-disclosed methods.

One or more of the above-disclosed embodiments in addi-
tion to certain alternatives are provided in further detail below
with reference to the attached figures. The disclosed subject
matter is not, however, limited to any particular embodiment
disclosed.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosed embodiments may be better understood by
referring to the figures in the attached drawings, as provided
below.

FIG. 1 illustrates an example computing environment in
accordance with one or more embodiments, wherein a server
system is implemented to service a plurality of requests.

FIG. 2 is an example flow diagram of a method of synchro-
nously processing a request, in accordance with one embodi-
ment.

FIGS. 3A and 3B are flow diagram of an example methods
for processing a request asynchronously, if attempts to pro-
cess the request synchronously are unsuccesstul, in accor-
dance with one embodiment.

FIGS. 4A and 4B are block diagrams of hardware and
software environments in which the disclosed systems and
methods may operate, in accordance with one or more
embodiments.

Features, elements, and aspects that are referenced by the
same numerals in different figures represent the same, equiva-
lent, or similar features, elements, or aspects, in accordance
with one or more embodiments.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

In the following, numerous specific details are set forth to
provide a thorough description of various embodiments. Cer-
tain embodiments may be practiced without these specific
details or with some variations in detail. In some instances,
certain features are described in less detail so as not to obscure
other aspects. The level of detail associated with each of the
elements or features should not be construed to qualify the
novelty or importance of one feature over the others.

Referring to FIG. 1, an example operating environment
100 is illustrated in which a client machine 110 is in commu-
nication with a server system 120 over a network 130. Guest
software 114 may be running over an operating system 112
loaded on the client machine 110. In accordance with one
aspect, guest software 114 may generate a request that may be
submitted to sever system 120 over network 130 for process-
ing. The request may, for example, include instructions for
server system 120 to perform one or more operations on data
stored on a storage device 140.

Storage device 140 may be locally connected to the server
system 120, or remotely connected to server system 120 over
network 130. Server system 120 may provide the results of



US 9,372,722 B2

3

the operations performed on the data to guest software 114 or
other software running on client machine 110 (or other
machine or device connected to network 130). Server system
120 may have one or more threads to execute the program
code for request processor 124 associated with different
requests. A request registration system 150 may be provided
to register any outstanding requests, for example, as provided
in further detail below.

In accordance with one embodiment, it is desirable to
configure the operating environment 100, including sever
system 120, to allow for real-time requests to be submitted by
client machine 110 to server system 120 in a way that server
system 120 is capable of robust real-time processing of a
request by assigning the request to a first thread for synchro-
nous processing, where the request is expected to be pro-
cessed by the first thread within an acceptable timeline. It is
further desirable that the processing of the submitted request
is managed in a reliable manner, so that if the first thread is
unable to service the request within the acceptable timeline,
then server system 120 reverts to an asynchronous mode,
wherein a second thread is assigned to process the request.

Referring to FIG. 2, a request may be submitted by client
machine 110 to the server system 120 for synchronous pro-
cessing (S210). Upon receipt, the server system 120 assigns
the request to a first thread for synchronous processing within
a threshold time (S220). The time threshold may be a pre-
defined (e.g., acceptable) timeline for the servicing of the
request. This timeline may be defined by server system 120 or
client machine 110. The first thread may determine whether
the request is acceptable (S225). For example, a request may
be deemed acceptable, if the user has the proper authority and
credentials to perform the request.

If the request is not acceptable, server system 120 may
reject the request (S226) and terminate the first thread or
reassign the thread to serve another request. The first thread
then determines whether the request may be processed syn-
chronously (S230), taking into account any known issues that
may affect the synchronously processing of the request with-
out delay. If an issue is detected, the first thread may register
the request with request registration system 150 (S240). The
first thread (or another thread) may be associated as the thread
executing the request, for example.

It is noteworthy that to preserve the atomicity of the pro-
cessing of the request, the first thread may be assigned as the
responsible thread (e.g., worker thread) of the request at the
same time the request is placed in the request registration
system 150. The first thread may then continue to execute the
program of request processor 124 and service the request
(S250) or attempt to service the request as provided in further
detail below (e.g., see S350 in FIG. 3B).

In one embodiment, once the request is accepted and reg-
istered with request registration system 150, server system
120 takes on the responsibility to see that the request is
processed to completion, whether by attempting to service the
request using the first thread or by assigning the request to a
second thread, if for some reason, the first thread is unable to
successfully service the request within the acceptable time-
line. For example, if when the request arrives, the first thread
determines that the request may not be processed synchro-
nously, due to a known transient fault in the server system
120, then remedial action may be taken as provided below
(S260).

Referring to FIG. 3A, in one embodiment, remedial action
may be taken by way of the first thread registering the request
with the request registration system 150 for processing but
without associating the first thread as the thread executing the
request (S310). The first thread may then notify client

10

15

20

25

30

40

45

50

55

60

65

4

machine 110 to indicate that the synchronous (i.e., real-time)
processing of the request is not achievable at the time and that
the processing of the request is deferred to a later time (S315).
As such, the request will be performed asynchronously.
Thereafter, the first thread either terminates (S320) or is
assigned to service another request that may be pending at the
time.

Referring to FIG. 3B, in one embodiment, a request is
registered with the request registration system 150 and is
assigned to a thread to process the request asynchronously
(S340). The thread executes the program of request processor
124 and the thread may attempt to service the request (S350).
If'the thread successfully services the request (S360), then the
results may be reported to the client machine 110, for
example, and the request is unregistered from the request
registration system 150 (S370) and is terminated (S375) or
reassigned to serve another request. In the event that the
thread is unable to service the request (e.g., due to unavail-
ability of resources or other transient fault), then the thread
may attempt to service the request again within the acceptable
time line (S350).

If the additional attempts fail, then the thread disassociates
itself from having to service the request (S380) and leaves the
request registered with the request registration system 150.
The thread may then be terminated (S385) or reassigned to
serve another request. In one implementation, the thread may
terminate unexpectedly (e.g., due to a fault in the server or the
request processor code). Either way, the request registration
system 150 may then asynchronously assign a thread to pro-
cess the request at a later time (S340). The thread then con-
tinues to execute the program of request processor 124 and
services the request (S350) until it is successful when it
unregister the request from the request registration system
150 (S370) or later disassociates itself from the request
(S380). The records of the request registration system 150
may be updated to reflect the disassociation of one thread and
the association of another thread as the worker thread for
servicing the request. A notification of same may be submit-
ted to client machine 110.

References in this specification to “an embodiment™, “one
embodiment”, “one or more embodiments” or the like, mean
that the particular element, feature, structure or characteristic
being described is included in at least one embodiment of the
disclosed subject matter. Occurrences of such phrases in this
specification should not be particularly construed as referring
to the same embodiment, nor should such phrases be inter-
preted as referring to embodiments that are mutually exclu-
sive with respect to the discussed features or elements.

In different embodiments, the claimed subject matter may
be implemented as a combination of both hardware and soft-
ware elements, or alternatively either entirely in the form of
hardware or entirely in the form of software. Further, com-
puting systems and program software disclosed herein may
comprise a controlled computing environment that may be
presented in terms of hardware components or logic code
executed to perform methods and processes that achieve the
results contemplated herein. Said methods and processes,
when performed by a general purpose computing system or
machine, convert the general purpose machine to a specific
purpose machine.

Referring to FIGS. 4A and 4B, a computing system envi-
ronment in accordance with an exemplary embodiment may
be composed of a hardware environment 1110 and a software
environment 1120. The hardware environment 1110 may
comprise logic units, circuits or other machinery and equip-
ments that provide an execution environment for the compo-
nents of software environment 1120. In turn, the software



US 9,372,722 B2

5

environment 1120 may provide the execution instructions,
including the underlying operational settings and configura-
tions, for the various components of hardware environment
1110.

Referring to FIG. 4A, the application software and logic
code disclosed herein may be implemented in the form of
machine readable code executed over one or more computing
systems represented by the exemplary hardware environment
1110. As illustrated, hardware environment 110 may com-
prise a processor 1101 coupled to one or more storage ele-
ments by way of a system bus 1100. The storage elements, for
example, may comprise local memory 1102, storage media
1106, cache memory 1104 or other machine-usable or com-
puter readable media. Within the context of this disclosure, a
machine usable or computer readable storage medium may
include any recordable article that may be utilized to contain,
store, communicate, propagate or transport program code.

A computer readable storage medium may be an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor medium, system, apparatus or device. The com-
puter readable storage medium may also be implemented in a
propagation medium, without limitation, to the extent that
such implementation is deemed statutory subject matter.
Examples of a computer readable storage medium may
include a semiconductor or solid-state memory, magnetic
tape, a removable computer diskette, a random access
memory (RAM), a read-only memory (ROM), a rigid mag-
netic disk, an optical disk, or a carrier wave, where appropri-
ate. Current examples of optical disks include compact disk,
read only memory (CD-ROM), compact disk read/write (CD-
R/W), digital video disk (DVD), high definition video disk
(HD-DVD) or Blue-ray™ disk.

In one embodiment, processor 1101 loads executable code
from storage media 1106 to local memory 1102. Cache
memory 1104 optimizes processing time by providing tem-
porary storage that helps reduce the number of times code is
loaded for execution. One or more user interface devices 1105
(e.g., keyboard, pointing device, etc.) and a display screen
1107 may be coupled to the other elements in the hardware
environment 1110 either directly or through an intervening
1/0 controller 1103, for example. A communication interface
unit 1108, such as a network adapter, may be provided to
enable the hardware environment 1110 to communicate with
local or remotely located computing systems, printers and
storage devices via intervening private or public networks
(e.g., the Internet). Wired or wireless modems and Ethernet
cards are a few of the exemplary types of network adapters.

It is noteworthy that hardware environment 1110, in certain
implementations, may not include some or all the above com-
ponents, or may comprise additional components to provide
supplemental functionality or utility. Depending on the con-
templated use and configuration, hardware environment 1110
may be a machine such as a desktop or a laptop computer, or
other computing device optionally embodied in an embedded
system such as a set-top box, a personal digital assistant
(PDA), a personal media player, a mobile communication
unit (e.g., a wireless phone), or other similar hardware plat-
forms that have information processing or data storage capa-
bilities.

In some embodiments, communication interface 1108 acts
as a data communication port to provide means of communi-
cation with one or more computing systems by sending and
receiving digital, electrical, electromagnetic or optical sig-
nals that carry analog or digital data streams representing
various types of information, including program code. The
communication may be established by way of a local or a

25

40

45

50

55

60

6

remote network, or alternatively by way of transmission over
the air or other medium, including without limitation propa-
gation over a carrier wave.

As provided here, the disclosed software elements that are
executed on the illustrated hardware elements are defined
according to logical or functional relationships that are exem-
plary in nature. It should be noted, however, that the respec-
tive methods that are implemented by way of said exemplary
software elements may be also encoded in said hardware
elements by way of configured and programmed processors,
application specific integrated circuits (ASICs), field pro-
grammable gate arrays (FPGAs) and digital signal processors
(DSPs), for example.

Referring to FIG. 4B, software environment 1120 may be
generally divided into two classes comprising system soft-
ware 1121 and application software 1122 as executed on one
or more hardware environments 1110. In one embodiment,
the methods and processes disclosed here may be imple-
mented as system software 1121, application software 1122,
or a combination thereof. System software 1121 may com-
prise control programs, such as an operating system (OS) or
an information management system, that instruct one or more
processors 1101 (e.g., microcontrollers) in the hardware envi-
ronment 1110 on how to function and process information.
Application software 1122 may comprise but is not limited to
program code, data structures, firmware, resident software,
microcode or any other form of information or routine that
may be read, analyzed or executed by a processor 1101.

In other words, application software 1122 may be imple-
mented as program code embedded in a computer program
product in form of a machine-usable or computer readable
storage medium that provides program code for use by, or in
connection with, a machine, a computer or any instruction
execution system. Moreover, application software 1122 may
comprise one or more computer programs that are executed
on top of system software 1121 after being loaded from
storage media 1106 into local memory 1102. In a client-
server architecture, application software 1122 may comprise
client software and server software. For example, in one
embodiment, client software may be executed on a client
computing system that is distinct and separable from a server
computing system on which server software is executed.

Software environment 1120 may also comprise browser
software 1126 for accessing data available over local or
remote computing networks. Further, software environment
1120 may comprise a user interface 1124 (e.g., a graphical
user interface (GUI)) for receiving user commands and data.
It is worthy to repeat that the hardware and software archi-
tectures and environments described above are for purposes
of example. As such, one or more embodiments may be
implemented over any type of system architecture, functional
or logical platform or processing environment.

It should also be understood that the logic code, programs,
modules, processes, methods and the order in which the
respective processes of each method are performed are purely
exemplary. Depending on implementation, the processes or
any underlying sub-processes and methods may be per-
formed in any order or concurrently, unless indicated other-
wise in the present disclosure. Further, unless stated other-
wise with specificity, the definition of logic code within the
context of this disclosure is not related or limited to any
particular programming language, and may comprise one or
more modules that may be executed on one or more proces-
sors in distributed, non-distributed, single or multiprocessing
environments.

As will be appreciated by one skilled in the art, a software
embodiment may include firmware, resident software, micro-



US 9,372,722 B2

7

code, etc. Certain components including software or hard-
ware or combining software and hardware aspects may gen-
erally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, the subject matter disclosed may be
implemented as a computer program product embodied in
one or more computer readable storage medium(s) having
computer readable program code embodied thereon. Any
combination of one or more computer readable storage medi-
um(s) may be utilized. The computer readable storage
medium may be a computer readable signal medium or a
computer readable storage medium. A computer readable
storage medium may be, for example, but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, or device, or any suitable
combination of the foregoing.

In the context of this document, a computer readable stor-
age medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device. A computer readable
signal medium may include a propagated data signal with
computer readable program code embodied therein, for
example, in baseband or as part of a carrier wave. Such a
propagated signal may take any of a variety of forms, includ-
ing, but not limited to, electro-magnetic, optical, or any suit-
able combination thereof. A computer readable signal
medium may be any computer readable medium that is not a
computer readable storage medium and that can communi-
cate, propagate, or transport a program for use by or in con-
nection with an instruction execution system, apparatus, or
device.

Program code embodied on a computer readable storage
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out the disclosed opera-
tions may be written in any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Java, Smalltalk, C++ or the like
and conventional procedural programming languages, such
as the “C” programming language or similar programming
languages.

The program code may execute entirely on the user’s com-
puter, partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service Pro-
vider).

Certain embodiments are disclosed with reference to flow-
chart illustrations or block diagrams of methods, apparatus
(systems) and computer program products according to
embodiments. It will be understood that each block of the
flowchart illustrations or block diagrams, and combinations
of'blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, a special purpose
machinery, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions or acts specified in the flowchart or
block diagram block or blocks.

10

15

20

25

30

35

40

45

50

55

60

65

8

These computer program instructions may also be stored in
a computer readable storage medium that can direct a com-
puter, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions stored in the computer readable storage medium
produce an article of manufacture including instructions
which implement the function or act specified in the flowchart
or block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer or machine imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide pro-
cesses for implementing the functions or acts specified in the
flowchart or block diagram block or blocks.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments. In this regard,
each block in the flowchart or block diagrams may represent
a module, segment, or portion of code, which comprises one
or more executable instructions for implementing the speci-
fied logical functions. It should also be noted that, in some
alternative implementations, the functions noted in the block
may occur in any order or out of the order noted in the figures.

For example, two blocks shown in succession may, in fact,
be executed substantially concurrently, or the blocks may
sometimes be executed in the reverse order, depending upon
the functionality involved. It will also be noted that each block
of'the block diagrams or flowchart illustration, and combina-
tions of blocks in the block diagrams or flowchart illustration,
may be implemented by special purpose hardware-based sys-
tems that perform the specified functions or acts, or combi-
nations of special purpose hardware and computer instruc-
tions.

The claimed subject matter has been provided here with
reference to one or more features or embodiments. Those
skilled in the art will recognize and appreciate that, despite of
the detailed nature of the exemplary embodiments provided
here, changes and modifications may be applied to said
embodiments without limiting or departing from the gener-
ally intended scope. These and various other adaptations and
combinations of the embodiments provided here are within
the scope of the disclosed subject matter as defined by the
claims and their full set of equivalents.

What is claimed is:
1. A method for processing a request in a client-server
computing environment, the method comprising:

receiving from a client a request submitted to a server for
purpose of synchronous processing by the server;

assigning the request to a first thread for processing within
a first timeline, wherein the first timeline is predefined
by the client;

determining, by the first thread, whether the received
request is acceptable;

determining, by the first thread, whether the received
request can be processed synchronously, based in part on
known issues which affect the synchronous processing
of the request without delay;

in response to determining that the received request is
associated with known issues, registering the request
with a request registration system, wherein the request is
assigned to the first thread for processing and registered
with the request registration system at the same time, as



US 9,372,722 B2

9

one execution unit, and wherein the first thread marks

itself as a worker thread executing the request;
executing, by the first thread, a program of the request

processor and attempting to service the request;

in response to the first thread successfully servicing the

request, reporting results of the execution of the request
to the client and unregistering the request from the
request registration system;

in response to unregistering the request from the request

registration system, terminating the first thread or reas-
signing the first thread to another request;
in response to the first thread unsuccessfully servicing the
request, executing, by the first thread, additional
attempts to service the request within a second timeline;

wherein if the additional attempts to service the request
within the second timeline fail, then the first thread dis-
associates from the request, and wherein the request
remains registered with the request registration system;
and

terminating the first thread or reassigning the first thread to

service another request.

2. The method of claim 1, further comprising:

in response to determining, by the first thread, that the

received request cannot be processed synchronously due
to a fault occurring in the server, registering the request,
by the first thread, with the request registration system
for processing;

notifying the client, by the first thread, that the synchro-

nous processing of the request cannot be completed at
that time;

deferring, by the first thread, the processing of the request,

to a later time, wherein the request is processed asyn-
chronously at the later time; and

terminating the first thread or reassigning the first thread to

service another request.

3. The method of claim 2, wherein an alternative thread or
a secondary alternative thread is assigned for processing the
request asynchronously, and the alternative thread dissociates
itself from processing the request, if the alternative thread
does not complete processing of the request within the second
timeline.

4. The method of claim 1, wherein the request is deemed
acceptable, in response to determining that a user has creden-
tials to access resources needed for processing the request.

5. The method of claim 1, wherein the request is processed
by a request processor thread executed on the server.

6. The method of claim 1, wherein if the request is deemed
unacceptable the request is rejected by the server and the first
thread is terminated by the server.

7. The method of claim 1, wherein after the request is
determined acceptable and registered with the request regis-
tration system, the server is responsible for ensuring that the
request is processed to completion, and wherein the server is
configured to:

attempt to service the request using the first thread; or

assign the request to an alternative thread, if the first thread

is unable to service the request.

8. The method of claim 2, wherein the server submits a
notification to the client indicating that the request has been
registered with the request registration system for processing.

9. The method of claim 2, wherein in response to determin-
ing that the first thread assigned to processing the request is
terminated due to a fault occurring in the server, the request is
asynchronously reassigned to an alternative thread.

10

15

20

25

30

35

40

45

50

55

60

65

10

10. The method of claim 1, wherein the termination of the
execution of a request by a thread and an assignment of the
execution of a request to a thread cause for a notification to be
sent to the client.

11. The method of claim 1, wherein the first and second
timelines are derived from at least one of the client request,
client identity, type of service requested, or pre-configuration
of the server.

12. The method of claim 1, wherein a monitor is used to
detect one or more faults in a thread assigned to process the
request, such that in response to detecting a fault, the thread is
disassociated from the request at the request registration sys-
tem.

13. The method of claim 1, wherein when a request regis-
tered at the request registration system is assigned to a worker
thread, the request registration system automatically disasso-
ciates the thread from the request and asynchronously assigns
the request to an alternative thread, unless the request is
unregistered or disassociated from the worker thread at the
request registration system within a timeline.

14. A system for processing a request in a client-server
computing environment, the system comprising:

one or more computer processors;

one or more computer readable hardware storage media;

program instructions stored on the one or more computer

readable hardware storage media for execution by at
least one of the one or more processors, the program
instructions comprising:

program instructions to receive from a client a request

submitted to a server for purpose of synchronous pro-
cessing by the server;

program instructions to assign the request to a first thread

for processing within a first timeline, wherein the first
timeline is predefined by the client;

program instructions to determine whether the received

request is acceptable;

program instructions to determine whether the received

request can be processed synchronously, based in part on
known issues which affect the synchronous processing
of the request without delay;

in response to determining that the received request is

associated with known issues, program instructions to
register the request with a request registration system,
wherein the request is assigned to the first thread for
processing and registered with the request registration
system at the same time, as one execution unit, and
wherein the first thread marks itself as a worker thread
executing the request;

program instructions to execute a program of the request

processor and attempt to service the request;

in response to the first thread successfully servicing the

request, program instructions to report results of the
execution of the request to the client and unregister the
request from the request registration system;

in response to unregistering the request from the request

registration system, program instructions to terminate
the first thread or reassign the first thread to another
request;
in response to the first thread unsuccessfully servicing the
request, program instructions to execute additional
attempts to service the request within a second timeline;

wherein if the additional attempts to service the request
within the second timeline fail, then the first thread dis-
associates from the request, and wherein the request
remains registered with the request registration system;
and



US 9,372,722 B2

11

program instructions to terminate the first thread or reas-

sign the first thread to service another request.
15. The system of claim 14, further comprising:
in response to determining that the received request cannot
be processed synchronously due to a fault occurring in
the server, program instructions to register the request
with the request registration system for processing;

program instructions to notify the client that the synchro-
nous processing of the request cannot be completed at
that time;

program instructions to defer the processing of the request,

to a later time, wherein the request is processed asyn-
chronously at the later time; and

program instructions to terminate the first thread or reas-

sign the first thread to service another request.

16. The system of claim 15, wherein an alternative thread
or a secondary alternative thread is assigned for processing
the request asynchronously, and the alternative thread disso-
ciates itself from processing the request, if the alternative
thread does not complete processing of the request within the
second timeline.

17. The system of claim 14, wherein the request is deemed
acceptable, in response to determining that a user has creden-
tials to access resources needed for processing the request.

18. The system of claim 14, wherein the request is pro-
cessed by a request processor thread executed on the server.

19. A computer program product comprising a non-transi-
tory computer readable storage medium having a computer
readable program, wherein the computer readable program
when executed on a computer causes the computer to:

receive from a client a request submitted to a server for

purpose of synchronous processing by the server;

assign the request to a first thread for processing within a

first timeline, wherein the first timeline is predefined by
the client;

determine whether the received request is acceptable;

determine whether the received request can be processed

synchronously, based in part on known issues which
affect the synchronous processing of the request without
delay;

in response to determining that the received request is

associated with known issues, register the request with a
request registration system, wherein the request is
assigned to the first thread for processing and registered
with the request registration system at the same time, as
one execution unit, and wherein the first thread marks
itself as a worker thread executing the request;

5

10

15

20

25

30

35

40

45

12

execute a program of the request processor and attempt to

service the request;

in response to the first thread successfully servicing the

request, report results of the execution of the request to
the client and unregister the request from the request
registration system;

in response to unregistering the request from the request

registration system, terminate the first thread or reassign
the first thread to another request;

in response to the first thread unsuccessfully servicing the

request, execute additional attempts to service the
request within a second timeline;

wherein if the additional attempts to service the request

within the second timeline fail, then the first thread dis-
associates from the request, and wherein the request
remains registered with the request registration system;
and

terminate the first thread or reassign the first thread to

service another request.

20. The computer program product of claim 19, further
comprising:

inresponse to determining that the received request cannot

be processed synchronously due to a fault occurring in
the server, register the request with the request registra-
tion system for processing;

notify the client that the synchronous processing of the

request cannot be completed at that time;

defer the processing of the request, to a later time, wherein

the request is processed asynchronously at the later time;
and

terminate the first thread or reassign the first thread to

service another request.

21. The computer program product of claim 20, wherein an
alternative thread or a secondary alternative thread is assigned
for processing the request asynchronously, and the alternative
thread dissociates itself from processing the request, if the
alternative thread does not complete processing of the request
within the second timeline.

22. The computer program product of claim 19, wherein
the request is deemed acceptable, in response to determining
that a user has credentials to access resources needed for
processing the request.

23. The computer program product of claim 19, wherein
the request is processed by a request processor thread
executed on the server.

#* #* #* #* #*



